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Abstract. The uansport coefficients of the Anderson model require knowledge of both & 
temperature and Frequency dependence of the single-panicle spectral densities and consequenuy 
have proven difficult quantities 10 calculate. Here weshow how these quantities can be calculated 
via an extension of Wilson's numerical renormalization p u p  method. Accmte resulls ax 
obtained in all p m e l e r  regimes and for the full range of temperatures of interest ranging from 
the high-temperature pertubalive regime T >> TK, ulrough the cross-over region T = TK. and 
into thc low-temperature smng coupling regime T << TK. The Fermi Liquid relations for the 
T2 mefficient of the resistivity and the linear coefficient of the thennopawer &e satisfied to a 
high degree of accwacy. The techniques used here provide a new highly accurate approach to 
stmngly correlated electrons in high dimensions. 

In this Letter we present accurate new results for the mspor t  coefficients of the Anderson 
model obtained by using the numerical renormalization group method [l]. The Anderson 
model has been used extensively to interpret the properties of magnetic impurities in 
simple metals, certain aspects of heavy fermion behaviour [2] and the low-temperature 
transport through a quantum dot [3]. Recently this model has also become important for an 
understanding of the properties of correlated electrons on a lattice in high dimensions. The 
electron self-energy becomes local in infinite dimensions [4,5] and the problem reduces 
to that of an impurity [6]. In particular the solution of the d = 00 Hubbard model has 
been shown to reduce to the solution of an Anderson impurity model with a hybridization 
function, A(@), determined by a self-consistency requirement [7-91. The self-consistency 
condition is straightforward to handle and the difficult part of the problem has remained the 
calculation of the dynamics of the underlying impurity problem, and more specifically of 
the impurity single-particle spectral densities. This is just the problem which one encounters 
in attempting to calculate the mspor t  coefficients of the Anderson model which depend 
sensitively on the temperature and frequency dependence of the single-particle spectral 
densities p & ~ ,  T). An accurate solution of this problem can therefore provide the solution 
of the d = M Hubbard model. Our main interest, then, is the accurate solution of the 
Anderson model and in particular the calculation of its single-particle spectral densities. The 
Bethe unsutz has been successful in providing exact results on the thermodynamic properties 
of several models of magnetic impurities including the N-fold degenerate Anderson model 
[IO, 111, but the method cannot be used to extract dynamic properties. The latter have 
been obtained by applying approximate methods. For N = 2 perturbation theory in the 
local Coulomb repulsion, U, has been used [I21 whilst for larger N (typically N 6) 
the non-crossing approximation (NCA) has been applied to calculate the thermodynamic. 
transport and dynamic properlies [13,14]. The former eventually becomes unreliable for 
large enough values of U (typically for U / x A  > 2.5 where A is the resonance level width) 
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and the latter fails to satisfy some exact Fermi liquid relations at low energies [15]. Recently, 
Quantum Monte Carlo methods in combination with the maximum entropy principle have 
also been used to extract dynamic properties [ 16-18]. These have so far been restricted to 
the symmetric model and to U / H A  < 3. They become more inaccurate and time consuming 
for larger values of U and lower temperatures. 

A comprehensive and highly accurate approach to the calculation of dynamic properties 
of magnetic impurity models has recently been developed, based on an extension of Wilson's 
numerical renormalization group approach, which overcomes many of the limitations and 
difficulties of the other approximate schemes. This has led to reliable results valid in all 
regimes and at both zero [19-241 and finite [ZS] temperature, and which satisfy all the 
sum rules and Fermi liquid relations of the Anderson model [ZO]. With such results for 
the dynamic properties it becomes possible to calculate the transport coefficients of the 
Anderson model over the full temperature range of interest. We report here results for the 
resistivity, and thermopower based on these numerical renormalization group calculations. 
Results for the Hall coefficient and thermal conductivity have also been calculated and will 
be presented in a forthcoming publication [26]. 

Our starting point is the non-degenerate (N = 2) Anderson model 

This can be re-cast in the form of a linear chain model which may then be iteratively 
diagonalized. The ~anczos algorithm is applied to H~ = xm &Ck, with starting vector 
canIvac) t = Vkc$lvac) where V = ,/m so that the conduction electron part 
of H is reduced to a semi-infinite linear chain with site 0 coupled to the impurity via a 
hybridization term of strength V [ I ,  191: 

The parameters [En ,hn) .n  = 0,1, ... reflect the form of the hybridization function 
A(w) = H ck IV&(W - ti). In the present case of the magnetic impurity problem 
we are primarily interested in low-energies where A(o) may be taken to be a slowly 
varying function of o which can be approximated by a constant A. In this case, and 
by replacing the continuum of conduction electron states in (-D, D) by a discrete set 
&DA-". n = 0, 1,. . . , A > 1. a discrete approximation to H can be obtained with 
parameters h, - DA-"/2, n >> 1 [ I ]  (the E ,  are zero for a half-filled symmetric band). For 
the impurity model corresponding to the d = 03 Hubbard model, the frequency dependence 
of A(w) is important and leads to a different set of parameters An. The model has to be 
solved repeatedly in this case to obtain a self-consistent A(@) using the self-consistency 
requirement in [[7-91. 

The discretized Anderson model with hn - DA-"/2, n >> 1, discussed above, can be 
iteratively diagonalized to obtain the many-body eigenvalues E;: and eigenstates Ip ) ,  on 
successively lower energy scales on - DA-"lZ, n = 0, 1, , . . by following the procedure in 
[I]. n e  procedure statts with diagonalizing the impurity part HO = E, €dCfi,C&+Und?nd$ 

and then adding the coupling to the local conduction electron state V ~ ( C ~ ~ C ~ ,  + HC). 
After this one adds successive energy shells = 0 , 1 , .  . . 
and diagonalizes the resulting Hamiltonian. Since the number of states gmws like 4" 

h n ( ~ ~ + l o ~ n ,  + c,,c.+,,),n t 
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it  is in practice only possible to retain the lowest 500 or so states at each stage. This 
restricts the reliable range of excitations w to be such that 0, < w < Kw,, where 
K 10 for A - 3. The lower excitations m calculated more reliably in successive 
iterations, whilst information on the higher excitations is contained in previous iterations. 
The eigenvalues are used to calculate the partition function at a decreasing sequence 
of temperatures T, = w,,/ke - DA-"iz7n = 0, 1, ... and from this one extracts the 
thermodynamic properties [ 1,311. 

From the eigenvectors Ip). we recursively evaluate the single-particle matrix elements 
Mip' = (plcd,lp') which are required for the nth shell Green function G:o(w, T) and 
spectral density p;(w, T ) ,  

Here Z.(P) is the partition function for the nth clustert or energy shell. In evaluating 
p,"(o, T) the delta functions are replaced by Gaussians having widths cr, of order w. 
appropriate to the cluster size. At T = 0 the spectral density is evaluated at excitations 
w Iz: U, using the nth cluster. At finite temperature kBT > 0, and when w Iz: w, becomes 
of order ksT excited states not contained in the nth cluster become importanr In this case 
we use a smaller cluster (containing information about the higher excited states) to evaluate 
the spectral densities at energies w such that w 6 kBT. Results for the spectral densities 
pd(0, T )  are shown in figure 1 and figure 2 for various temperatures. 

The Friedel sum rule pd(@ = E F ,  T = 0) = ( I /xA)  sin2(nnd/2) and Shiba relation for 
the dynamic susceptibility [34] are satisfied to within a few percent in all parameter regimes 
[19,20,35]. 

The calculation of transport properties is straightforward once accurate results for the 
temperature and frequency dependence of the spectral densities are obtained. The resistivity 
p ( T )  and thermopower S ( T )  are given in terms of the integrals 

where the relaxation time r(@, T )  is given in terms of the local d-electron Green function 
by r(o, T)-' = 2i?1v12pd(@, T ) ,  and e is the electronic charge. There are two exact Fermi 
liquid relations for the transport coefficients. The first is for the coefficient of the TZ term 
in the low-temperature resistivity [27.28]. For T << TK and in the Kondo regime we have 

(8) p ( T )  = ~ ( 0 )  [ 1 - c ( T / T d Z ]  
where c = n4/16 = 6.088, and TK is defined by 

kBTK = u(A/2u)'/zeRfdd'fdd+~)f~u (9) 
Results for the resistivity are shown in figure 3 for U / r A  = 4 and for several values of 
the local level position ranging from the Kondo regime ( q / A  = -(U/2A), -4, -3, -2) to 

t The term cluster is suggested by the notation, although the calculations described here are in k-space [ I ]  
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Figure 1. The spectral density p d ( o .  T) in me mixed valent regime c d / A  = - 1 for several 
values of lhe reduced lemperature t = TfTK and for U / x A  = 4. Note lhal A is a more 
appropriate energy scale in this regime than TK. For the present panmeters TK = 0.59A. 

the mixed valent regime (€,,/A = -1,O) and the empty orbital regime (Q/A = +I) .  For 
high temperatures T >> TK, as described elsewhere [25], the resistivity is well described by 
the Hamann result [36]. In the Fermi liquid regime T < TK the inset in figure 3 shows 
the expected T2 behaviour. In the Kondo regime the values of the T2 coefficient extracted 
from a least squares fit in the region 0 < T < 0. IT, are 5.7,5.8,6.4 and 6.6 in going 
from the symmetric case to ed = -211. These values agree to within 8% of the exact 
result c = 6.088. Quantum Monte Carlo results for the symmetric case for U/zA < 3 
give the T2 coefficient to within 19% of the exact result [IS]. The current approach which 
iS not restricted to very low or very high temperatures also gives accurate results for the 
resistivity in the cross-over region T - T, 1251. The T = 0 resistivity p(0 )  satisfies 
p ( 0 )  - sinz(nnd/2) in accordance with the Friedel sum rule for the single-particle spectral 
density [26]. 

A second Fermi liquid relation relates the linear coefficient of the thermopower to the 
local level occupancy. nd(T = O), and the linear coefficient of specific heat, y.  [29,30] 

(10) 

This is a much more difficult Fermi liquid relation to satisfy, because the local level 
occupancy n d ( 0 )  is obtained by integrating the single-particle spectral density up to the 
Fermi level, the linear coefficient of specific heat is obtained as a second derivative 
-limr-o ( a 2 F ( T ) / a T Z }  of the Free energy and limT+o{S(T)/T] involves evaluating 

lim ( e S ( T ) / y T }  = R cot(nnd(0)/2). 
T-0 
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Figure 2. The spectral density pdw.  T) in the Kondo regime e d / A  = -3 for several values of 
lhe reduced temperature I = T/TK and for U l n A =  4. 

the transport integrals using the finite T spectral densities @(O, T). All these quantities 
are evaluated using the numerical renormalization group method and the above relation 
provides a very severe test of the accuracy of the method. 

The thennopower is shown in figure 4 for the mixed valent, empty orbital and Kondo 
regimes. The sign of the thennopower at low temperatures is determined by the sign of 
(ap(o, T)/ao),=, and is always positive for the range of parameters considered. At higher 
temperatures the behaviour of S(T) is more complicated. However, in the mixed valent and 
empty orbital regimes the single resonance always lies above the Fermi level (see figure I), 
and from equation (7) the thennopower is positive at all temperatures. In the Kondo regime 
a distinctive maximum appears in the thennopower at T FZ TK. At higher temperatures, 
the thermopower can become negative and for sufficiently high temperatures positive again. 
This behaviour is associated with the temperature dependence of the satellite peaks at Ed 

and Ed t U (see figure 2). The low-temperature behaviour of the thennopower (inset to 
figure 4) shows the expected linear in T Fermi liquid behaviour and one can use this to 
exhilCt limT-0 ( S ( T ) / T ) .  By calculating the linear coefficient of specific heat from the free 
energy and nd(T = 0) from the spectral densities we can test the Fermi liquid relation (IO). 
This is shown in figure 5. It is seen that limT,o [ S ( T ) / y T ]  lies within 6% of cot(nnd/z) 
in nearly all cases. This agreement is remarkable and shows clearly that the method is 
capable of giving close to exact results for transport coefficients and finite temperature 
dynamic properties in addition to the T = 0 dynamics and the thermodynamics. We have 
not made any of the sophisticated corrections [31] to improve on the thermodynamics and 
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Figure 3. The scaled resistivity p(T)/p(O) over the full temperature range in various regimes 
and for U / n A  = 4, €d/A = I (a), €d/A = 0 (A). €*/A = - I  (0). €d/A = -2 (*), 
ed/A s -3 (+), €d/A = -4 (x) and the symmekic m e  (a), It should be noted Uta1 a more 
appropriate energy scale in the mixed valent and empty orbital regimes is A.  The inset is for 
( I  - (p(T) /p(O) ) )  versus (T/T& and shows the T2 Fermi liquid behaviour for 7 << 7' m 
the Kondo regime. 

only the even energy shell spectral densities have been utilized, hence there is scope for 
improvement The characteristic peak at T % TK in the thermopower in the Kondo regime 
is often referred to as the giant thermopower. This peak can become very large, although 
to see this one needs to keep fld fixed and approach the Kondo regime by increasing U. In 
our calculations cd was varied to approach the symmetric case for which the thermopower 
is zero as can be seen by setting nd = 1 in equation (10). From equation (IO) it is clear 
that keeping nd fixed and increasing U leads to an exponential increase in the thermopower 
since y - I / &  - eeu,a > 0 thus giving a giant thermopower in the Kondo limit. The 
vanishing of the thermopower for half-filling is an d f a c t  of the simplified model used 
here which neglects the non-resonant scattering of conduction elect" as discussed in 
[321. An extension of the present calculations to include non-resonant scattering, leads to 
enhanced thermopowers for half-filled systems and describes the qualitative behaviour of 
the thermopower of concentrated Kondo compounds [33]. 

In this letter we have presented new results for the thermopower and resistivity of 
the Anderson model over the full temperature range of interest and in several parameter 
regimes by using the numerical renormalization group approach. The Fermi liquid relation 
for the linear coefficient of the thermopower is satisfied with remarkable accuracy, as is 
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within 6% of each other in all cases. except 
for the empty orbital case c d / A  = +1 where 
lhe ermr is IO%. 
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that for the T 2  coefficient of the resistivity. The Hall coefficient, thermal conductivity and 
finite temperature dynamic susceptibilities have also been calculated and will be presented 
elsewhere [26,35]. Our results are in contrast to NCA calculations [13,14] which violate 
Fermi liquid relations at low energies, and to perturbation in U calculations which, although 
accurate, eventually break down for U / n A  > 2.5 [12]. We are able to treat a much wider 
range of regimes than the Monte Carlo approach [ 181 which has so far only been applied 
to the symmetric case where the thermopower is zero and which often builds in the sum 
rules which constitute independent tests within our approach. "he techniques presented here 
for extracting the spectral densities of the Anderson model provide a new highly accurate 
approach to the d = 03 Hubbard model. 

We acknowledge the support of an SERC grant, the Computational Science Initiative for 
Computer equipment and Dr V ZlatiC for his helpful comments. 
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